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The problem proposed by Steklov [1] of finding all the cases when the equations of motion of a rigid body in an ideal fluid allow
of afourth integral in the form of a homogeneous polynomial of arbitrary degree is considered. When there is a certain symmetry,
when other methods do not work [2-6], this problem is solved, including for a particular integral: all these cases are exhausted
by the classical cases. An improvement of Husson's approach [7] is proposed, beginning from the second step. © 2000 Elsevier
Science Ltd. All rights reserved.

1. INTRODUCTION AND FORMULATION OF THE RESULT

The equations of inertial motion of a rigid body for irrotational flow around the body of an ideal
homogeneous incompressible fluid, which is at a rest at infinity, have the form [8]

M=Mxo+pxv, p=pxw, ©=dT/eM, v =0T /dp

(1.1)
2T =(aM, M) + 2(bM, p) + {cp, p)

Here M has the meaning of the total moment of the “body plus fluid” system, p is the overall momentum,
differentiation with respect to time is carried out in a system of coordinates frozen in the body, a, b
and c are constant 3 X 3 matrices, comprising the positive-definite matrix

a b
b ¢

inverse to the matrix of the inertia coefficients when the added masses are taken into account, T is the over-
all kinetic energy, w is the angular velocity of the body and v is the velocity of the origin of coordinates [9].

Equations (1.1) have an invariant measure and three quadratic conservation laws, discovered by
Kirchhoff: T, (M, p), p*.

These equations also arise in other physical problems. For example, they describe the rotation around
a fixed point of an electrically charged rigid body in a uniform magnetic field and an axisymmetic force
filed with a quadratic potential, neglecting the effect of self-induction (in this case only the form
(aM, M)) is positive-definite)[10, 11].

The function F(x) is said to be algebraic at the point x = 0, if 4y + A F + ... + AF* = 0, where
Ag(x), ..., Ax(x) are functions that are analytic at the pointx = 0, 4;(x) # 0,k € N, see [12].

The integral of system (1.1) is said to be supplementary [1, 8], if it is independent of the classical
integral and is said to be particular [13, 14] if it is only conserved when (M, p) = 0. It can be shown that
the additional integral (general or particular) of system (1.1), algebraic at the point M = p = 0, can be
reduced to a corresponding supplementary homogeneous rational integral [15, 2].

Steklov [1] and Lyapunov [16] obtained all the cases of the existence of a supplementary linear and
quadratic integral of system (1.1)(later this was done in [17] for an arbitrary, not necessarily positive-
definite, form 7).

Theorem. For values of the parameters

a=diag(a),a),ay), a; >0, a;>0, b=diag(h,,b,b;), c=diag(c,,c;,c3)

all cases of the existence of an additional algebraic general or particular integral of system (1.1) are
exhausted by the classical integrals: Kirchhoff [8], Clebsch [18] and Chaplygin [13].
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Corollary. Chaplygin’s integral of the fourth degree [13] is not continued to the algebraic integral
outside the surface (M, p) = 0.

This problem was investigated in [2] when a, # a; # a3 and for arbitrary b and ¢ by making the
replacement p — ep and splitting the separatrice of Euler’s case, where the Hamiltonian nature of the
perturbed problem (1.1) is essentially employed, see [3, 4].

When a; = a, in the unperturbed case of a regular Euler-Lagrange precession there are no
separatrices. The splitting of the other separatrices with another introduction of a small parameter is
established either for small ¢; + ¢, # 0 [5], or for fairly large as/a, [6]; the density of the secular set—
for almost all ay/a, > 2 [6] (with the exception of the classical integrable cases).

Remark. In the most important case when the body has three mutually perpendicular planes of
symmetry

a=diag(a,,ay,a;),a; >0, i=1,2,3, b=0, c=diag(c,,c;,c3)

the theorem of this paper, together with the result obtained in [2], concludes the problem formulated
by Steklov [1].

The proof of the theorem rests on Husson’s method [7] of the expansion of the supplementary integral
in a small parameter, uses the technique of the analysis of algebraic relations of Abel integrals, rising
to the classical Abel and Chebyshev results [19] and which rest on the estimate of the algebraic
multiplicity of zero defined in Section 1.

When the unperturbed system has a complete set of algebraic integrals (Section 5), the obstacles to
integrability in osculating algebraic variables are reduced directly to the residues and periods on the
unperturbed solution in certain integro-differential operators of the vector field (cf. [20, 14]). These
operators contain an integration along the unperturbed solution and differentiation with respect to the
osculating variables and the perturbation parameter.

2. THE ALGEBRAIC MULTIPLICITY OF ZERO
Suppose » € Q. We will but

W=s2-1, 0=(-DIs+1), M=NyU(%-No) N=(0,1,2..)

Abel’s lemma [21]. The integral [ W*ds is an algebraic function of 5, In ¥ if and only if x € Z/2. In
particular, it will be an algebraic function of s if and only if x € M.

The proof of Abel’s lemma follows from the well-known results in [21, 22].

Suppose a ring K is generated above C by the functions s, 1/NW and a ring L is generated above K
by the function in 9. For

F=3 fnd), feK+ WK, neN,
=0

we put v.f: = min; ord,fj.
The following two properties of ord., are extended to v..

Property 1.
v.(f+g)=min{v_f,v.g}
When v..f # v.g We have an equality.
Property 2.
Voo (f8) = Voo S + V8

Lemma 1. Suppose g(s) is a function that is algebraic at the point s = . Then
(a) if ord.g # 0, then ord..g’ = ord.g + [
(b)if ord,.g = 0, then ord.g' > 1.

Property 3. Suppose f € L. Then
@) vof =1 + vof;
(b)if vf <1, then v f’ = 1 + vof.
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Criterion 1. Suppose f € L, vof = 2 Then
[fAdse L, v, ([ fds)=0
Criterion 2. Suppose
T = [(W W™ ds)ds, LmeZ

Then the condition J,,, ¢ L is equivalent to min{/,m} < -1 <!+ m.
The proofs of properties 1, 2, and 3 of Lemma 1 and Criteria 1 and 2 are given in Section 6.

3. HUSSON VARIABLES
We make the replacement
M, p)—> Giynriz2znpy), 10t
o=(p,q,7, p=PpPnp3)
=ptiq, y2=p-1q, zZ1=p1+ip; Z=p;—Iip;
used by Husson for a symmetrical heavy rigid body (see [23]). We obtain
Y ==y, + p3(Bazy +By27)/ 2-B(1 - a)(rzy + 3y p3) + 2Byrzy
y2 =0ryy = p3(Baz; +B322)/ 2+ B - a)(rzy + y,p3) - 2By 12
B, B B G.1)

2 2 ]
— (20 — + - _vz —_—t ! zZ, — "z
4(1—(!.)( 1 ZZ) 2()’22, ¥ 2) 1_a(y2 2 =N l)

L =NP3-IZ, =12 =Py pa=(ng —yz)/2

where
l-o=a/ay, 2B=2b,—-b—by, 2B, =b-
Ba=a(ci =) By=ap(ci+cy=28), & =¢;-PB*/ay+B]/q
We will write the linear combinations of the initial integrals
H=2aT+PB} —ay(c; +¢2)/2)p%,  H, =2a)(M,p)-2Bp*, H,=p’
in the form
H=yy, +(1—a)r? +B, (2% +22)/4—Bsp2 /2
Hy = 123 + y22) + 201~ )rpy = By (2] +23) - 2B212, — 22 — a)p} (32)
Hy =225 + P.%

When B, # 0 (i.e. with the exception of the integrable Klrchhoff case), without loss of generality we
can put B, = 1, assuming that either p, b € R or p, b € iR (the latter is equivalent to replacing p, b

and c by p/f_z, b\B, and cB,).

4. THE REPLACEMENT (y,, 21, p3) — &(y1, 21, P3)

Following Husson, when B = 0 we introduce a small parameter ¢ into the system by means of this
replacement.
The system and the integrals take the form

¥ = =0y, + p3(eB3z; +25)/ 2 - B(1 — o) (rz, + €y, p3)
4.1)

¥2 = 0ryy — py(€2) +Ba2)/ 2+ P(1 — 0)(rz; + €y, p3)
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r= 4(]_a)(€2212—Z%)+%£B()'Zzl -22)

4L =ENPy =12, G =1L =8Py Py = (Y —n0)/2
z§/4+(l—a)r2+£y|y2 +e2(22 14-B3pi/2)=h (42)
Yi2a + 22, + 21— A)rpy = 2Bhy — 2e(1 - )Bp3 = hy

uzy +epi =y

Here h, h, and h, are the constants of the integrals.

'We will assume that system (1.1) and, consequently, also (4.1) when & = 1, has a supplementary
homogeneous rational integral F(y;, y2, 7, 21, 2, p3) (possibly, only on the surface M, p) = 0, i.e. when
(Hy + 2BH>) (1, Y2 1, 21, 22, p3) = 0. Then, F(eyy, y2, T, €21, 23, €p3) is a homogeneous rational integral
of system (4.1) for arbitrary & (on the surface e Y(H, + 2BH))(ey1, Y2 T, €21, 22 €p3) = hy + 2Bhy = 0)

By virtue of relations (4.2) we can write successively

2y = 2Aw—eyy, — X2 14-Bp2 IDVE, 7 = (hy —ep})27'

4.3)
¥y, = ~(3p) + 201 = Q)rpy — by — 2By — 2€(1~ 0OBp3 )23’
where w = b — (1 — a)r*. Hence, in variables
u=(y, -Bz)z;%, R= W(a—l)/zﬂa
system (4.1) takes the form
du € 1 - - 1 - -
- = 5p3[5|34z; * pow’z8 ! +2Bu —-é-e(hz —ew' " R%)z;! “] =
= &f, (h by, by, R )+ €2 fy (b g, Ror)
(-ay2dR _ S 2 -l
w _=_+(I~a) w p3=g()(h9h|’h‘2au,r)+egl(hvhlvh21uvar)+'~~ (4'4)

dr p

2 2y -2
2 2 (hy —€p3)2 2
=——2 — +efS+e" A, =2(2- -
P -0 p 20— Bs=202-0)p" -B;
S = hyuzd™ + (1= 0)rpy —hy /2 —£p32[(2 —o)B+uzy™]
The following proposition follows from relation (4.4) and recurrent formulae (4.3).

Proposition 1. The functions f;, g; (i = 0, 1, 2,...) are polynomials of Ay, h,, u and R.

Proof. The expansion of the numerators and denominators of the right-hand sides of system (4.4) and the right-
hand sides of recurrence relations (4.3) in series in powers of ¢ are polynomials in ki, ko, 4, R, 3, p3,y1, 21. So also
are the formulae y,(u, z;) and ps(h, R, r). In view of the arbitrariness of A

Zlep=2w=2(h=(1 —an?) #0

But only z, and w are not under the natural power. Induction with respect to i concludes the proof.
Integrating system (4.4) with € = 0, we have
i=2"C, R=D+I+CJ

4.5
=%(l—a)hljw(a_3)/2d,, J=“%(I—G)h21wa_2dr (4.3)

where C and D are integration constants. We will assume that C and D are chosen as integration constants
of system (4.4) for arbitrary &.
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In all cases below we assume 4 # 0.

1. The case o ¢ Q, (hy, hy) # 0. It follows from the existence of four independent algebraic
integrals of system (4.1) that there is an algebraic relation on ¥,(r), p3(r) r—the components of
the solution of system (4.1) when & = 0, whence the algebraic relation r, w°, R for arbitrary C and D
follows. From this relation, by virtue of the first Abel lemma ([23, 9.2]), we obtain a € Q, ie. a
contradiction.

2. The case a € Q, then u(y,, z;), R(ps, r) are algebraic functions and the integral

g;(e_y]q,VZ'raszlsz2sep3)= Zslpl(hvhth,uv R’r)
1=l

is an algebraic function of 4, hy, hy, u, R, r, €. Suppose m is the minimum such that the coefficient F™
is functionally independent of &, 4 and h,. Then the integral E,_, &'F can be replaced by 35, "F,
which is functionally independent of 4, &, and h, when & = 0.

Definition. We will call the function
F(h by by, Rr, €)= FO(R By byt R P)+ ..+ €"F (B, by by i, R, P

the &”-integral of system (4.4) if, by virtue of it dF/dr = o(e"). This integral will be said to be
supplementary if FYis not a function solely of #, 4, and h,.
When « € Q system (4.4) has a supplementary algebraic £%-integral u.

Proposition 2. With the exception of the cases
Daelh—Ny, h=0;2)ae -2Nyp, hy=0; 3Yhy =hy, =0 (4.6)
the supplementary algebraic g%integral is uniquely defined, apart from a functional relationship.

Proof. In the case of two supplementary independent algebraic £’-integrals, all the solutions (4.5) must be algebraic
curves in u, R, r space for arbitrary C and D. Consequently, I and J must be algebraic functions of r. Hence, using
Abel’s lemma, we have one of the following possibilities

Da=1; 2)h|=hz=0; 3)h|=0, oa-2¢e¢ M;
Hhy=0, (@-3)2eM; 5 a-2, (a-3)2eM
Assuming a > 1, we obtain the required result.

In cases 3-9 considered below, this condition is satisfied uniquely.
We will seek a general solution of system (4.4) in the form of series

u(h, by, by, C.D,r €)= i +eu’ +€%u” +
R(h,hl,ib,C,D,r,e)=R+£R’+82R”+

equating coefficients of powers of &. Integrating the system obtained by equating the coefficients of &',
we have

f *Rdr 4.7

2 .
x=Yx,C' =(@~1)2"" {B4w‘°‘ +2pw N 2C -%-aw—'Cz}
i=0

‘Z‘ % (h Ry by, i, R, P’ T i 3 (oo i, R,r)R' + f(h, by by, i, R, r) (4.8)
’

Proposition 3. The functions u(hy, h,, C, D, r) R’, u", R",... are polynomials of h;, h,, C and D.

The proof follows from the triangularity of system (4.4), formulae (4.4) and proposition 1.

The subcase of the uniqueness of the supplementary algebraic integral when £ = 0. Substituting into
the supplementary algebraic &'-integral



234 S. T. Sadetov

u+eF(h, h,hy u, R r)
the expansion of the general solution in &, we obtain the algebraic relation
'+ F'(h, by hy. ii, R, r) = const(h, by, hy,C, D) 4.9)
Similarly, the presence of the g’-integral
u+eF (hhy, by, ut, R+ €2 F2(h by, hy,u, R, 1)

is equivalent to the supplementary algebraic relationship
” alrl - B ’ aF' D ’ 2 - D _
u +a—-(h,h|,h2.u, R, ru +-ﬁ-(h’ h, by, R r)R" + F*(h,h by i, R, r)= const(h, by, hy,C, D) (4.10)
u

Proposition 4. The following relation holds
F' = AMw)R? +p(u, r)R+v(u,r)

where A, p, and v, are algebraic functions of u and r (for brevity, the dependence on h, ; and & is not
shown here and below).

Proof. The functions R(C, D, r) and u'(C, D, r) are polynomials of no higher than the first degree
in D. Differentiating the Husson identity (4.9) in the variables C, D and r with respect to D, we
obtain

F' - F .
| xdr+ 57 (@#, R, r) = consi(C, D), W(u, R,r) = const(C, D) 4.11)

It follows from the second identity of (4.11) that 3*F'(u, R, r)/aR? is an algebraic e’-integral of system
(4.4), which is functionally dependent on A, h; and k,, and by virtue of the proposition, on the subcase,
which proves Proposition 4.

Substituting the expression of F ! into the first identity of (4.11) we have

2 .
T C'fu;dr+ 2027 C)I + CJ) + p = const(C) (4.12)
=0

3. Thecase Q € o ¢ Z/2, (hy, hy) # 0. This is the case of the uniqueness of the supplementary algebraic
integral, and hence, by virtue of Proposition 4, we have formula (4.12).
We substitute the Puiseux series of the functions A and p. at the point C = = into (4.12)

) [ n
N2EC)= 3 MC, p2EC )= T (NC”

[=—0c0 n=-o0

where Ny = 0 when [ # 0.

When A= 0 orly < 0 or h, = 0,j < 1, considering the coefficient of C?in (4.12) we obtain that [x,dr
is algebraic with respect to r, whence a = 0, a contradiction.

When A\ = 1, by # 0 considering the coefficient of C *1 we obtain that the expression digy fx,dr +
A/ is algebraic with respect to r, where 8; is the Kronecker delta, whence, by virtue of Abel’s lemma,
o — 2 € Z/2, a contradiction.

When Ay = 2, h, = 0,y # 0, consideration of the coefficient of ch, similarly leads to a contradiction.

4. The case a € 12 — Ny, hy # 0. By Abel’s lemma, all terms on the left-hand side of identity (4.12),
apart from the second and fourth, are taken in the algebraic functions and logarithms; but, individually,
neither the second nor the fourth are taken. Consequently, either = h; = 0 (which contradicts the
condition of the case) or 2\ = \;C. But the latter possibility is eliminated, since then the coefficient of
C? in identity (4.12) would have the form

27 oo - [ wldr+A\,J +,(r) = const

where a # 0, while the second integral is an algebraic function of .
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Consequently, the Chaplygin case cannot be extended to the case of general integrability.

5. The case a € —2Ny, hyf # 0. In this case all terms of identity (4.12), apart from [x,dr, can be
represented in the form of the sum of monomials In ¥, ', W *'Z | e Z with constant coefficients
¥ = (s — 1)/(s + 1),s = —r (1 = o)/h, while the expansion of this term contains 8 In o, o = yo — 1r
+ w'2 a contradiction. _

6. The case o € ~1~2Ngy, hify # 0. We will use the fact that R e L, while the coefficient of C°D°
inu’ is equal to

20t — 1)BaSwoldr

and contains In w. The latter follows from Criterion 2 in view of the fact that —1 is contained in
the integer interval {(a — 3)/2, —(a + 3)/2}. We obtain a contradiction with the first Husson equality.

7. The case when a € ~Nyora € — 1/2 — Ny, B = hy = 0. From the formulae for solutions (4.5)
and (4.7) and the recurrence relations (4.3) we obtain

5 =2w?, i=C2"% $,2;' ~B. R=D+I1+CJ
"5"122 ~2(l_a)rw(l—a)/2k (4‘13)
53 /2==5F, ~2p(1- 00w 2R, ' ~ (@ ~1)27"B,[w *Rdr

where the tilde denotes that in the expressions for 7; the terms 7; € L with reduced order of the
pole with respect to r and r = « are omitted: these are such that v.(7;) — va(1) = 1 — a; for
u' the corresponding expression is obtained taking into account Criterion é; for f(h, hy, By, u, R, 1, €)
here and below we will denote by f, f', f",... the derivatives with respect to & of the general
solution

L3f D.r.€), R(hhy,hy,C.D )

F&T(h;hlthvu(h;hlv”chi ,r,E), ( s I8 85 s ’r‘e)’ r.e e=0

i=0,1,2,..

where the quantities zj, z1, y] are expressed from relations (4.3).
Differentiating (4.4) with respect to ¢ when & = 0 and substituting expressions (4.13) into its right-
hand side, we obtain

dR’ [ dr ~ (o= DPw 2R [a -2 - (1 + a)(1 - @) rPw™'] (4.14)

Consequently, v..(dR'/dr) = 1 = « and the terms neglected in (4.14) lie in L, = {f € L |v.f = 2}
8. The case o € —1-2Ny, B4 = 0. It follows from Criteria 1 and 2 that R, u’e L, and consequently,
an additional algebraic &'-integral u + &Fy(u, R, r) exists.

Proposition 5. Under the conditions of this case R’ belongs to L.

Proof. From formula (4.14), according to Criterion 2, since ~1 ¢ [(a — 3)/2, =2 —j] (j = 0, 1), we obtain that
terms in R’ that are linear in D belong to L. It is obvious that the coefficients of D* in R’ belong to L. For the
coefficients of h,z, integrating by parts, we have

j»W—j—m+l)lZ(Jw(u—.\)/'zdr)2d’: ijw(a_s)lzdr—fw(u—3)l2der (4 15)
1) = w2 @D 12y g, )

By Criterion 2 we have J; € L; vo(dJ/dr) = 2j + (« + 1), with the exception of {j = 1, @ = —1}, by property 3,
VoJ] = 2j = a and, by Criterion 1, since v,,(w("‘“”’zl) = 3, the last integral in (4.15) belongs to L. When o = 1,
by Lemma 1, v..J; = 0 and, in view of Criterion 1

[w2ndrel

For the coefficients of /1,4, and A3 these estimates are satisfied even more.

The subcase a # —1, hihy = 0.Inview of Propositions 1 and 3, the coefficient of C°D®in 1" is calculated
by substituting u = 0 in the first equation of system (4.4). It is equal to
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27 (L —ahy fw™' " Mdr

By Criterion 2 this integral contains Inw if and only if —1 e [(« — 3)/2, ~1—(a + 3)/2]. Under the
conditions of this subcase —1 belongs to this interval. We obtain a contradiction with the second Husson
identity.

9. The case a & — Nj. Substituting into the right-hand side of (4.8) the terms of maximum power in
D (the result of this substitution is denoted below by a tilde) in the quantities indicated below

#=2""C, R~D, u’~(a—l)2‘“D(B4lo+2BCl,+%aC212)

R’ ~ (o~ )D*B{(0 - 2)], — (o + I)(ot — 1)? I_;}-%DZC(a—l){(l ~ayw™ +aly)
Iy =[w™®dr, I, =jw—(u+l)/2dr‘ I, =Jw—ldr, I= jr2w’(°‘+5)’2dr

we obtain, in view of Propositions 1 and 3, the coefficient of D? in du”/dr in the two subcases below,
using analytical calculations in MAPLE V release 3.

The subcase o = —1,B, =0, # 0, (hy, hy) # 0. The coefficient of D*C* in du/dr is equal to — 128w ™",
This contradicts the algebraic relation (4.10) since i, R, u’, R’ € L, see case 8.

The subcase o € —~Ny, B =0, B4# 0,hy# 0. The inclusionu’ € L follows from (4.7), and the inclusion
R’ e L follows from (4.14). The coefficient of D*C in du"/dr, in view of the fact that

fw hdr =11, - [w™ I,dr

is equal to
2 %o - 1)? B4(j w™ "%dr + -;—J' w! Ioer

where the first integral is algebraic when a # 0, while the second contains In w when a € —Nj. When
a # 0 this contradicts the second Husson equality (4.10) (here we distinguish the third Clebsch case
a =0).

10. The case B = h; =0, @ € 1/2 —N, In this case the non-uniqueness condition 3 in (4.6) is satisfied,
and hence we have two functionally independent supplementary algebraic e°-integrals: u, v: = R — 2°u/.
In system (4.4) we will change to the variables u, v, r. It follows from the existence of a supplementary
algebraic e'-integral Fo(u,v) + eF'(u, v, ) that

0
%F-;(z-“ C,Du' + %’%—(2'“ C. D)o’ + F'(2°*C. D, r) = const (4.16)
aF° 9F°
“—,=—%0
( Ju Jv )$

The subcase B3 # 0. Expansion (4.7) takes the form

a-"—l =27 (—B3w‘“ +%C2w" )(D+ chdr (4.17)

where only the coefficient of D'C® does not belong to L and contains In o, the coefficient of D belongs
to K C L. From (4.4) we have

_ do’ _ZC(’I—Z((X—:‘})CWG—l +(o— l)rfe)x
o-1 dr 4
[¢3 ’
><(—h—2Cw°"I - (o - |)ri€)—£w"l~?2 ———2———Jéu—, R=D+cCJ (4.18)
4 2 oa-1 dr

where u' is given by (4.17). All the terms on the right-hand side of (4.18), with the exception of the last
one, and the coefficients of DC? and D°C? in the last term belong to L,. Hence
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——l—ﬂ)—=ﬂzw—“1(D+ CJ) modL, (4.19)
a-1 dr :

By Criterion 1 the primitive of the coefficient of D in this equation mod L is equal to
BqA()J' rw-ldf' ~Inw

and for C it is equal to
]

BaAgA,[w™ %dr ~Ino, o= %—n

o-1
where
) n i-n—112 | _ 2"n!h""
=r¥ A , Ag=——, A =———
Jwdr r,-:):o " 0 2n+1 (2n+ DN

The coefficients of frw™~'dr and fw™"Zdr on the left-hand side of identity (4.16) are equal to, respectively

a-1)? oF° _
( . ) BsAok, DS —(27C.D)
(4.20)
1 - oF® oa-1i 2, OF°
_(a—l)BJ[FBD-éu—'fTAOAnth 3 ]

where B is the coefficient of fw™"?dr in fw"~"?dr, and the coefficients given by (4.20) should vanish.
We will use the fact that the constants C and D are arbitrary. When ik, # 0 we obtain 83 = 0. When
hy = 0and B;h # 0 we have aF%/6u = 0 and Eq. (4.18) reduces to

. 2,2 )
@ _ep? [ = 2D [P mod k (4.21)
o—1 w 2 2 w

whence aF%au = 0, i.e. we obtain a contradiction with (4.16).

The subcase B3 = 0. It follows from (4.17), (4.19) and (4.20) that u’, »’ € L.

We will prove successively that the following functions belong to the ring L or the set w"*L and we
will estimate their ve: vor = vuw? = v 2, = —1; Vel = v = V¥ = VR = 0 [24], vuZ; = 1; using
Properties 1 and 2 we have v,p3 = vuy; = a — 1; from (4.3) v.2; = vout' = 0, vy, = o in view of
(4.19) and Criterion 1 we have v..v' = 0; since the coefficient of CD? in v’ is equal to (4.21), while in
v' it is zero, we have

VL' =V R =0, vopi=voy=a-1 vo=20-1 v z3=0

From the second equation of (4.4) we obtain

” 1 s
] fi—:hfzw‘“")’z(uzg"’)'W(l—(x)r{R(zz_z—-4—w N

Aa—1) dr (4.22)

_ - ~1/2~~0-) 51.2=-6
w2 (R2uzE Y + w2z + (1 - a)rRIB T,

Since all terms on the right-hand side of (4.22), apart from hw(®~D2,7373, belong to L,, the quantity

dw” du” dR” d , drR” (a-1)/250~3 s
32 = 2 oy = ———4(0 - Dhyw Z u
dr dr dr dr dr ( 2 2
belongs to L,.

The subcase B3 = 0, h, # 0. It following from system (4.4) that

| du” )/ 2 Foe e _ 3
&__TT_Z’L-’WH /2 fza-3 _ 4o (102 2Ry e |
hd r
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whence, in view of Criterion 1
u” ==2"%— Dhy fw™ " (D+CJ)dr mod L

0" = (i"4_')ﬁ- w2 J(D+CJ)dr mod L

From the existence of the supplementary algebraic e*-integral Fo(u, v) + sF'(u, v, r) + e*FXu, v, r) it
would follow that

0
%;77(2'“C Dju "+ (2’“C D)»” eC(ntnv ], (%E} %—J*O (4.23)

where C() [Inv] is a ring above the field C(r), generated by the element In v.
But integration by parts and the use of well-known formulae [24] show that

”

I:

ll

27" 2{((1— DBIng+c ALY '2“ W} mod L

hy

o’ _1 DA,lnw+CA,A Inc mod L

h 4 2 (@-1%

_ 0 , n=0 ~ 2
o= @n =~ =1, neN ' m@n? —1)

It follows from (4.23) that

CA l(o.-1) DB
DA K2~1)) CAA, Ko—1% |~

whence, in view of the fact that C and D are arbitrary, it follows that 444, = A,B = 0,i.e. 4, = 0 (here
we distinguish the Chaplygin case a = 112, B; = B = B3 = h; = 0 or 4, = B = 0, which corresponds
to an empty set of the parameters of the problem.

5. THE REPLACEMENT (yy, y2, P3) = &(y1, ¥2, P3)

In the remaining case §; = B = B3 = Hy = H, = 0, a € —Ny we introduce a small parameter ¢ into
system (3.1), (3.2) by making this replacement. We have

dy O =pypl2  dyy Oy, ¥ psz /2 1
dz 2y =& Py dz, rz) — €y, ps .

Nz + 33 -
21y o=l = (Z| )~y 2 =Py

where 4 is the constant of the integral H
Since system (5.1) has two algebraic £%integrals

-}
u=yz" v=y,uw A, w=4h+7} (5.2)
we can change to osculating algebraic coordinates (h, u, v, z;)

i =efy(hu,0,2))+ €2 (A, v,2))+ ... (5.3)

v =Eg,(h,u,v,z,)+£2g2(h,u,u,zl)+---

fi= o [uzz,' —4o +20c((:c—l)uzz,"]w_y2
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-1 —%
1 geon

& =

Expressions for fi, g1, f; and g, were calculated in MAPLE V.

Suppose F(y1, y2, I, 21, 2z, p3) is the supplementary algebraic interval of system (3.1) when
H 1= H2 = (.

Then

F ey, VeEya.ra.2VEp) = 3 € F S (huv,z). leZ, seN
I=ly
is the algebraic integral (5.1) with arbitrary . Suppose m| is a minimum number such that the quantity
F™ is functionally independent of k. Then the integral 21 "F" can be replaced byIZ gl=msplis 1n
view of the fact that system (5.1) is rational with respect to its component for integer powers of e will

also be the integral (5.1).
It follows from the existence of the supplementary algebraic £>-integral Fo(u V) +eF'(u,v,z;) +eF4(u,
v, z1) of system (5.1) that

oF'  oF° oF° oF°  or°
_—a?_T("’U)f'(u’U z|)+a—(u,v)g|(u» v, 2, (-a—u" F7 #0 (54)
F* oF oF°
-—a———i—(u v)fou,v,2;)+ —(u,v)gy (u, v, 7)) +
azl au a
oF" oF!
+ Tu-(u, v,z fiuv,2))+ -5-2;-(14.0, )8 (uv.2) (5.5)

Here and below, for brevity, the dependence on A is not indicated.
It follows from relations (5.3) and (5.4) that

-l 0 0
res; - (-QL] = —ah_yzuu, [u Qf——u -QF—]EO
v

whence, when a # 0 (here we distinguish the third Clebsch case a = 0), it follows that F® = Fo(uy),
and, without loss of generality, we can put F° = uv. Then, in view of (5.4)

2
F =X
-0

2,4 -2a “2a-k, 2 A=W !
[ (‘Zo 2k+l(—4h) ] u (60— 7yw J+(p(u.u)

Suppose C(z;, w'?) is the space of ratlonal functions of z;, w2, 8 = 2h1/2 + w2, Suppose N is a linear

space above C, generated by C(z;, w'?), Inzy, In 3.

In v1ew of the fact that the pnmmves J fldzl and g,dz; belong to N, the term ¢! makes no contribution
to —F*mod N. To calculate —F?modN it is sufficient [24] to substitute into relations (5.5) terms of small
powers of w

a(F'—(p')=2(6a—7)
du o1
a(Fl —q)')_ .7, w—y2
dv T oa-1

uv? w'yz(l + O(w))

[(60 ~ Tyu? =202 (4h) 2w + O(w?))

(the remaining terms make no contribution to the residues at the point w = 0). Taking into account
the fact that

ufy +ug, = uv32yw2[6(3a? - Ta+ 4)u’ + (S - 6)w + 2hw? ]

(o —1)?
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we obtain from relations (5.5) that —F modN is a polynomial in « and v and its coefficient of w is
equal to 41~ (d - 1)"*In w, which contradicts the fact that F? is algebraic.

Remark. When there is a complete set of algebraic &’- integrals, instead of obstacles to integrability
of the Husson form (4.16); (4.10), (4.23); .... in this problem we use the equivalent obstacles—the residues
and periods of the right-hand sides of (5.4), (5.5)..., multiplied by dz;, on the Riemann surface (z;,
¥1(z1), 72(z1)), defined by relations (5.2) (on which they are rational). In particular, a smaller number
of quadratures is required to calculate these obstacles.

6. PROOF OF THE ASSERTIONS OF SECTION 2
Proof of Property 1. Suppose

g= g,]nlﬂ

~
1}
[=}

Then
v (f +g)=min, ord.( f; + g;)= min {ord,, f;,ord,, g;)}= min(v f.V..8}
Proof of Property 2. Obviously
O1d oo (f18n ) = 01y f} +0T0e 8y B Voo f +Veog, Oisn, 0=m=n
Suppose /y and m are minimum numbers such that
ord,, f’o =V f, 0fde gy =Vaol

Then

==ly

n m iy
Ofdu[(lzo fl Inl ﬂ] (IZO 8m In"™ ﬁ]] = ord,,, Z ﬁl)+’1~'nm-l = Ol’dw(f,"gm" )= wa+ Vo8

Iy +mgy
Proof of Lemma 1. Using a Puiéeux expansion
g'()=s" (ag +a|s'”' +..), ag#0, teN, keQ/]
we have
g(s)=C+s'Mag (1-ky-ays™ " 10k -1/D)+..], C=const
whence

ord,, g = min{ord,, C,ord_, g’ 1}, ord, 0=+

Consequently, when ord, g < 0 we obtain assertion a, when ord., g < 0 we have ord. g >1land C# 0b, and
when ord,, g’ > 0 we have C # 0O a.

Proof of Property 3a. Actually

v S’ = minjord.. (f/+2(+ W™ f,1) =min ford,, f,orde (W' fi )= 1+
+minjord,, fi=1+v,f

where the first equality follows from the definition of v.., the first inequality follows from Property 1, and the second
follows from Lemma 1.

Proof of Property 3b. Suppose the number [ is such that v.f = ord,, f; Then

VoS <ord. (ff+20+ DWW fi,)=o0rd,, fi=1+0rd, fi =1+ Ve f
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where the inequality follows from the definition of v.,, the second equality follows from Lemma 1, since possibility
b in it is eliminated, and the first equality follows from the second and from the relation

ord,,(f,+|W"')=2+ord“,f,+, =l+ord,, f;

Proof of Criterion 1. Suppose that eitherorj = 0,k = -1, —3/2, -2,..., orj =1,k=-32,-2,-3/2,.... We
put

’jk1=ISjWklnlﬁds. 1=0,1,2,...

Then [y — 8B, In ¥ € K for a certain constant By and hence [y € L. By making the replacement s = 1/z we
can establish that [, is an analytic function at the point s = . Consequently, V[ = 0.
Integrating by parts

Ijkl = jkolnlﬂ—le'W"ljko ln'_l Ods (61)
we use induction with respect to /, and inside it induction with respect to k. We consider four cases of the evenness
of the quantities j and 2k. For example, if j = 0 and & is an integer, we have

=
foro =By Ind+s I A, W™, A, =const
m=k+1

Substituting this expression into (6.1) we obtain

-1
(+2B oy =loioin' 0-20 T Aplypy

m=k+|

where the second term belongs to Ly = {f € L|v,f=0} by the assumption of the induction.
Proof of Criterion 2. 1f I, m < 0, we have J;,, € L in view Criterion 1. If / < 0 = m, we have

m+! .
Ilm == Z A,‘]WldWELCOIS—ISm-%[

i=l
The case m < 0 < [ reduces to the previous integration by parts.

I'wish to thank V. V. Kozlov for suggesting the problem and for useful advice, and Yu. A. Arkhangel’skii
and D. V. Treshchev for their comments.
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